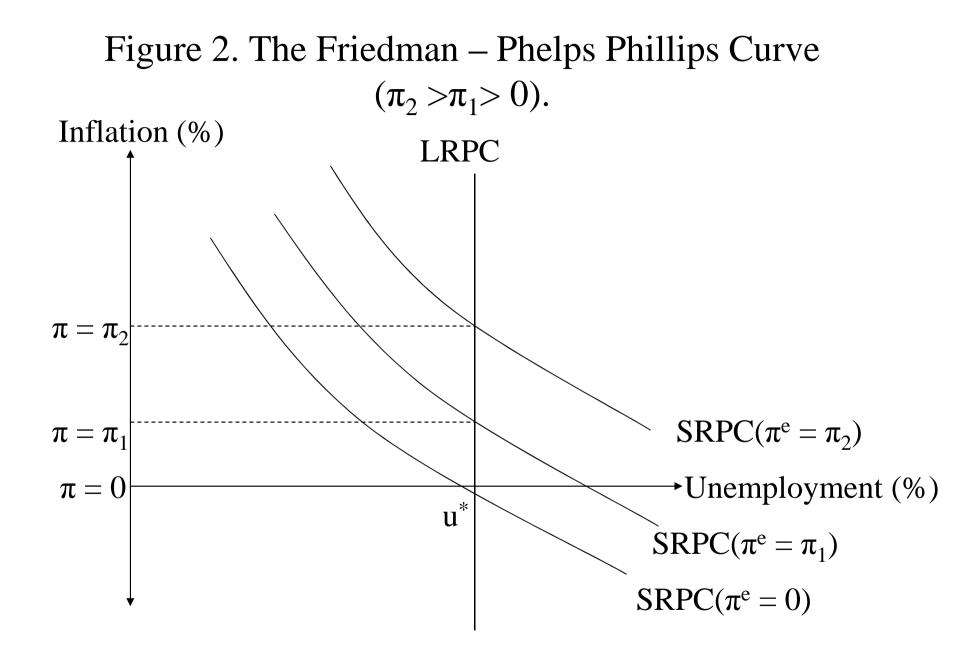

Inflation and the Theory of the Phillips Curve

Thomas I. Palley New America Foundation Washington DC E-mail:mail@thomaspalley.com

Figure 1. Taxonomy of different types of inflation.

Formation of inflation expectations vs. incorporation of inflation expectations

Lipsey PC


- (1.1) $w = f(u u^*)$ f(0) = 0, f' < 0, f' < 0
- *w* = nominal wage inflation;
- u = actual unemployment rate;
- u^{*}= rate of unemployment (frictional and structural) associated with full employment.

• (1.2)
$$\omega = f(u - u^*)$$
 $f(0) = 0, f' < 0, f'' < 0$

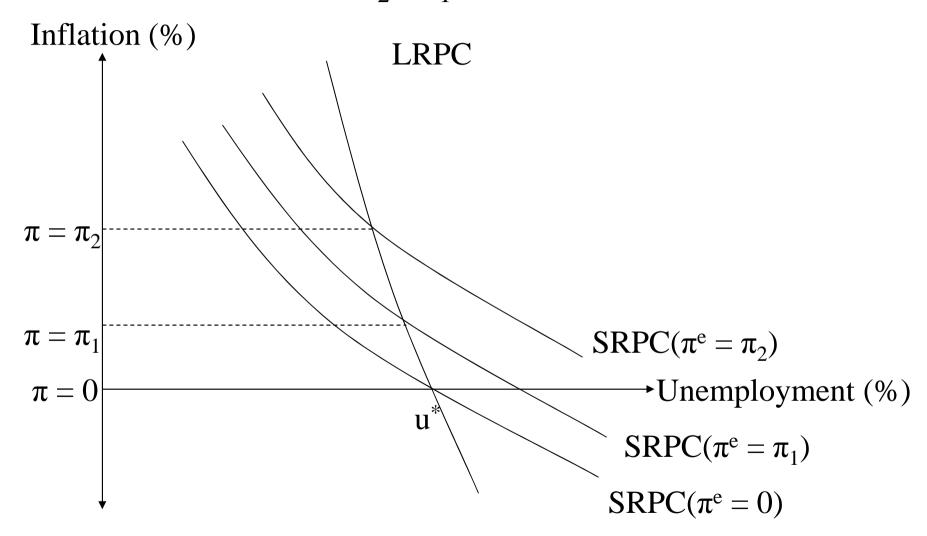
- ω = real wage inflation.
- (1.3) $\omega = w \pi$
- π = rate of price inflation
- (1.4) $w = f(u u^*) + \pi$

Friedman – Phelps PC

- Introduce inflation expectations
- (2.1) $w = f(u u^*) + \pi^e$
- π^{e} = expected inflation.
- (2.2) $\pi = w$
- (2.3) $\pi = f(u u^*) + \pi^e$
- Implications:
- A) No LR trade-off
- B) Vertical LRPC that crossed by family of SRPCs.
- C) Can keep $u < u^*$ if accelerate inflation.

Lucas PC

- <u>Replaced AE with RE.</u>
- Implications:
- (1) LRPC vertical but no family of SRPCs
- (2) Cannot keep $u < u^*$ by accelerating inflation.
- Friedman-Phelps-Lucas transformed macro:
- (1) End of Keynesian discourse about full-emp.
- (2) Shifted research attention to implications of expectations for policy.
- (3) Changed welfare interpretation of lowering unemp → "fooling" workers vs original Keynesian interpretation of reducing involuntary unemployment.


Tobin PC

- (3.1) $w = f(u u^*) + \lambda \pi^e$ $0 < \lambda < 1, f' < 0, f'' < 0$
- (3.2) $\pi = w$
- (3.3) $\pi = f(u u^*) + \lambda \pi^e$
- LR equilibrium condition ($\pi^e = \pi$):

• (3.4)
$$\pi = f(u - u^*)/[1 - \lambda]$$

- Slope = $d\pi/du$ = f'/[1 λ] < 0 if λ < 1.
- Implications
- (1) Family of negative sloped SRPCs & LRPC.
- (2) If have RE \rightarrow just have single LRPC.
- (3) If have RE → LRPC still negatively sloped → shows critical factor = incorporation of inflation expectations, NOT formation of expectations.

Figure 3. The Tobin neo-Keynesian Phillips Curve $(\pi_2 > \pi_1 > 0).$

Multi-Sector PC

- <u>Two challenges to developing PC</u>
- (1) Why does inflation help improve economic outcomes & welfare?
- (2) Why is coeff of inflation expectations < 1?

Figure 4. The problem of demand shocks in a multisector economy (sectors A, B)

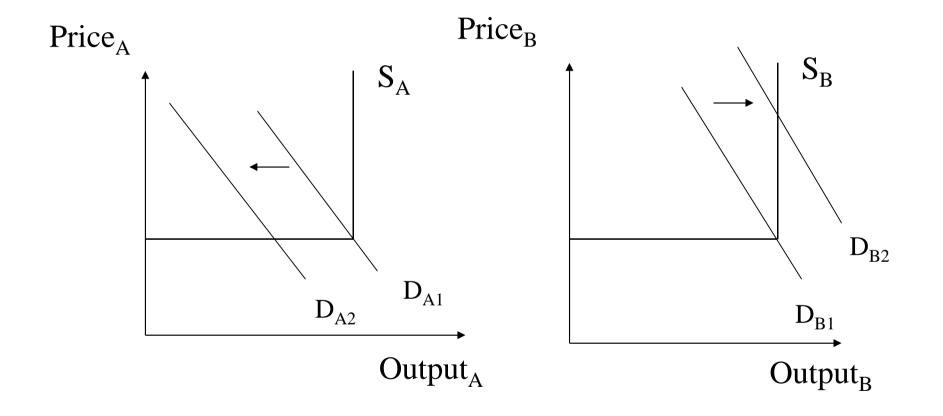
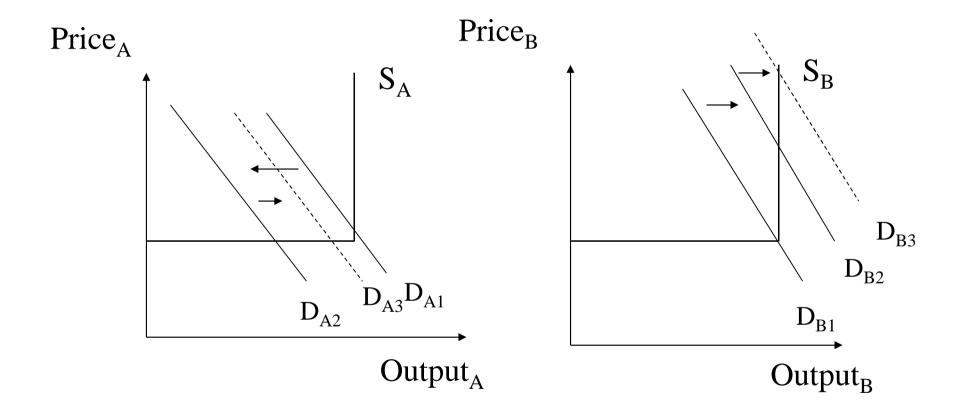



Figure 5. The effect of steady aggregate nominal demand growth multi-sector economy (sectors A, B)

Multi-Sector PC - 2

- $f(u_i u^*) + \lambda \pi^e$ $u_i > u^*, \ 0 \le \lambda \le 1,$
- (4.1) $w_i =$
- $f(u_i u^*) + \pi^e \qquad u_i < u^*$
- where i = 1, ..., N.
- (4.2) $\pi^{e} = \pi$
- (4.3) $\pi_i = w_i$
- (4.4) $w = \Sigma w_i / N$
- (4.5) $\pi = \Sigma \pi_i / N$
- (4.6) $u = \Sigma u_i / N$
- (4.7) s = s(u)

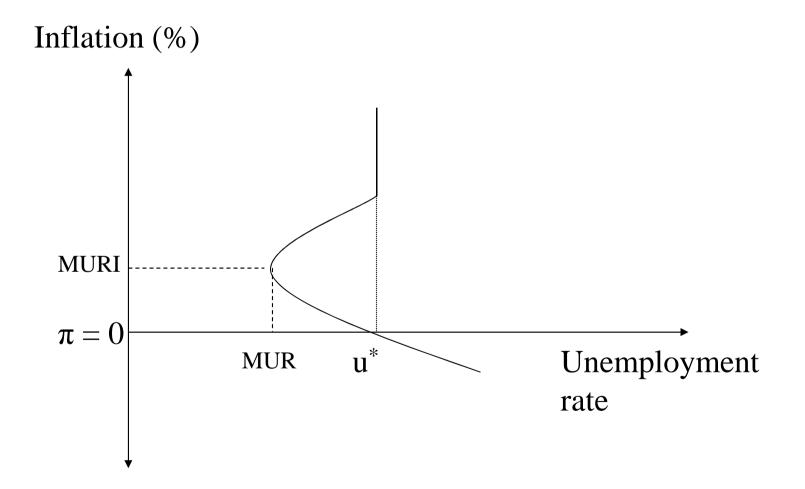
0 < s < 1, s' > 0

Multi-Sector PC - 3

- (4.8) $w = F(u u^*) + [1 s(u) + s(u)\lambda]\pi^e$ $F_u < 0$
- (4.9) $\pi = F(u u^*)/s(u)[1 \lambda]$
- $d\pi/du = \{ [1 \lambda]F' + F(u u^*)s_u \} / [1 \lambda]s(u)^2 < 0 \}$
- (4.10) $\Lambda = 1 s(u) + s(u)\lambda \le 1$ $\Lambda_u < 0$

Backward bending PC & near rational expectations

Backward bending PC & Near Rational Expectations - 1

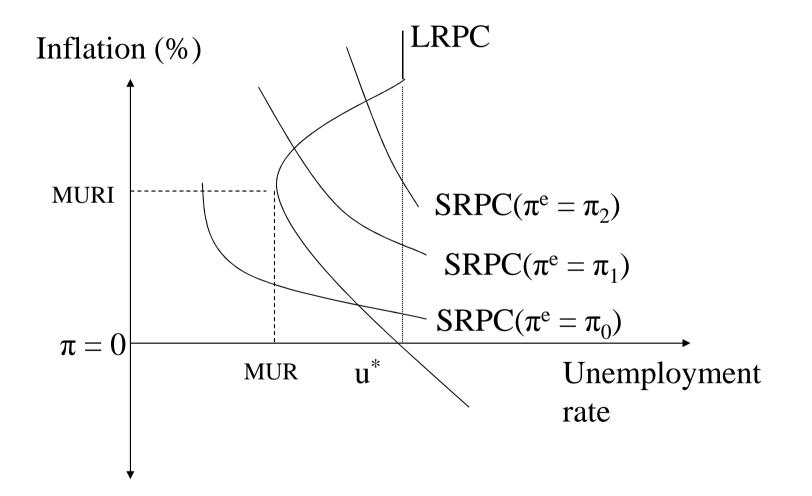

•
$$f(u - u^*) + \pi^e_R$$
 $i = R$
• $(5.1) w_i =$
• $f(u - u^*) + \pi^e_{NR}$ $i = NR$
• $(5.2) \pi^e_R = \pi$ $\pi < \pi^C p' > 0$
• $(5.3) \pi^e_{NR}$ $\pi < \pi^C p' > 0$
• $(5.4) \pi_i = w_i$
• $(5.5) w = sw_{NR} + [1 - s]w_R$
• $(5.6) \pi = s\pi_{NR} + [1 - s]\pi_R$
• $(5.7) s = s(\pi)$ $0 \le s \le 1, s' < 0$

Backward bending PC & Near Rational Expectations - 2

• (5.8)
$$\pi^{e} = s(\pi)\pi^{e}_{NR} + [1 - s(\pi)]\pi^{e}_{R}$$

- (5.9) $\pi = F(u u^*) + s(\pi)\pi^e_{NR} + [1 s(\pi)]\pi^e_R$
- High inflation regime $(\pi \ge \pi^{C}) = all rational$
- (5.10.a) $\pi = F(u u^*) + \pi^e$
- (5.10.b) $\pi^{e} = \pi$
- Lower inflation regime ($\pi < \pi^{C}$)= some non-rational
- (5.11) $\pi = F(u u^*) + s(\pi)p(\pi) + [1 s(\pi)]\pi$
- $d\pi/du = F'/[s(\pi) + \pi s' s'p(\pi) p's(\pi)] >_{<} 0$

Figure 6. The backward bending Phillips curve.

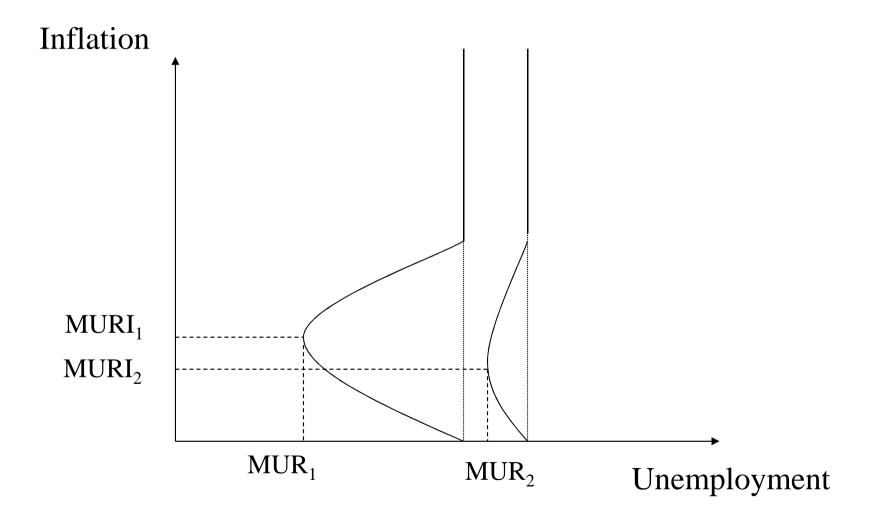


Backward bending PC in a multi-sector economy with incomplete incorporation of expectations

Backward bending PC, multi-sector economy with incomplete incorporation of expectations - 1

- $\lambda(\pi^e) < 1$ $\pi^e < \pi^C, \lambda' > 0$
- (6.1) $\lambda =$
- 1 $\pi^{e} \ge \pi^{C}$
- High inflation regime: $\pi^{e} \ge \pi^{C}$
- (6.2) $\pi = F(u u^*) + \pi^e$ $F_u < 0, \pi^e \ge \pi^C$
- (6.3) $\pi^{e} = \pi$
- Lower inflation regime: $\pi^{e} < \pi^{C}$
- (6.4) $\pi = F(u u^*) + [1 s(u)]\pi^e + s(u)\lambda(\pi^e)\pi^e$
- (6.5) $\pi^{e} = \pi$
- $d\pi/du = \{F' + s'\pi[\lambda(\pi) 1]\}/s(u)\{[1 \lambda(\pi)] \pi\lambda'\} >_{<} 0$

Figure 47 The backward bending Phillips curve (LRPC) with adaptive expectations $(\pi_2 > \pi_1 > \pi_0)$.


Near rational expectations vs. Incomplete incorporation of expectations

Worker militancy, conflict and the Phillips curve

Worker militancy, conflict and the Phillips curve

- $f(u_i u^*) + \lambda \pi^e$ $u_i > u^*, 0 \le \lambda \le 1,$ • $(7.1) w_i =$ • $f(u_i - u^*) + \pi^e$ $u_i < u^*$ • (7.2) $\pi = \pi^{e}$ • (7.3) $u^* = u(\psi)$ $u_{\psi} > 0$ • $\lambda(\pi^e, \psi) < 1$ $\pi^e < \pi^C, \lambda_{\pi e}^{\psi} > 0, \lambda_{\psi} > 0$ • (7.4) $\lambda =$ $\pi^{e} > \pi^{C}$ • where $\psi =$ labor militancy variable. $= F(u - u^{*}(\psi)) + [1 - s(u) + s(u)\lambda(\pi^{e}, \psi)]\pi^{e}$ $\pi^{e} < \pi^{C}$
- (7.5) w
- $= F(u u^*(\psi)) + \pi^e \qquad \pi^e \ge \pi^C$
- (7.6) $\pi = F(u u^*(\psi))/s(u)[1 \lambda(\pi^e, \psi)]$ $\pi^e < \pi^C$

Figure 8. Increased worker militancy shifts the backward bending Phillips curve to the right and lowers the MURI.

Conclusions